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Abstract—Binarized Neural Networks (BNNs) use 
only binary synapses of +1 and -1, not allowing any 
intermediate weights between -1 and +1. Though the 
recognition rate of BNNs is lower than the 
conventional Deep Neural Networks (DNNs), BNNs 
have attracted many interests nowadays, because 
BNNs do not need the complicated multiplication 
such as DNNs. Binary memristor crossbars can be 
very suitable to realize BNN hardware. This is 
because, in memristor BNNs, simple binary operation 
can be performed in bitwise manner for all the 
columns in memristor crossbars, simultaneously. In 
this paper, single-column and double-column 
memristor BNNs are presented, respectively. In 
addition, ReLU and sigmoid activation function 
circuits are also proposed with CMOS circuits. The 
designed Memristor-CMOS hybrid circuits of BNNs 
have been tested for MNIST vectors. The memristor 
BNNs could recognize almost 90% MNIST digits 
when the memristance variation is as large as 25%. 
For variation tolerance, the memristor BNNs are 
compared with the multi-valued memristor neural 
networks such as 4-bit, 6-bit, etc, in this paper. As a 
result, it has been confirmed the memristor BNNs 
become more variation-tolerant than the multi-valued 
memristor NNs when the variation becomes larger 

than 22%. Comparing the single-column and double-
column BNNs in this paper indicates that the single-
column BNN can save power consumption and array 
area almost by half than the double-column. This is 
because the single-column has just half memristors 
than the double-column. And, we measured the 
single-column and double-column BNNs using the 
fabricated memristor array. In this measurement, 
both the double-column and single-column BNNs 
were observed to work well.    
 
Index Terms—Memristor binarized neural networks, 
memristor crossbars, Memristor-CMOS hybrid 
circuits   

I. INTRODUCTION 

Deep Neural Networks (DNNs) are very useful in 
many human-like applications such as image and speech 
recognition, etc. Usually, DNNs use high-precision 
numbers such as 24-bit, 32-bit, or even 64-bit, in 
performing the complicated multiplication to update 
synaptic weights [1]. The high-precision multiplication in 
DNNs is the main reason why DNNs demand the very 
complicated multiply-accumulate (MAC) circuits with 
consuming large amounts of energy [2]. To mitigate the 
burden of high-cost multiplication, low-precision DNNs 
such as Quantization Neural Networks (QNNs), 
Binarized Neural Network (BNNs), etc. have been 
studied recently [2, 3]. Among them, especially, BNNs 
that are the simplest version of neural networks (NNs) 
employ only binary synaptic weights not calculating any 
high-precision numbers. The binarized operation can be 
performed simply by bitwise logic, not using any 
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complicated MAC circuits [3]. Thus, the energy and time 
of bitwise operation of binary synapses can be greatly 
reduced in BNNs, compared to the other high-precision 
DNNs demanding MAC operation [2-4]. In spite of these 
advantages due to the simple bitwise logic, the 
recognition rate loss of BNNs is small enough to make 
BNNs useful in many machine-learning applications 
demanding competitive performance as well as low-
power consumption.  

I. MEMRISTOR BINARIZED NEURAL 

NETWORKS 

Fig. 1(a) shows a conceptual diagram of BNNs, where 
x0, x1, x2, etc. are the input neurons that apply the input 
vectors such as the MNIST testing vector ‘5’ to the 
BNNs. Here MNIST stands for Modified National 
Institute of Standards and Technology. y0, y1, y2, etc. 
represent the hidden neurons and z0, z1, z2, etc. are the 
output neurons. In Fig. 1(a), w0,0,0 is the synaptic weight 
between the x0 neuron and the y0 neuron for layer #0. 
Similarly, w0,0,1 represents the synaptic connection of y0 
and z0 for layer #1. In BNNs, all the synaptic weights 
should be either +1 or -1 not allowing any intermediate 
values between -1 and +1 [3]. 

In realizing BNN hardware, memristor crossbars can 
be used to represent binary synaptic weights of BNNs, as 
shown in Fig. 1(b). Here memristors can be fabricated on 
two metal lines crossing each other. To represent binary 
numbers, memristors can be programmed High 
Resistance State (HRS) or Low Resistance State (LRS) 
by applying electrical voltages or current pulses. As 
illustrated in Fig. 1(b), x0, x1, x2, etc. are the input 
neurons which deliver the input vector to the memristor 
crossbar, where the binary synaptic weights are stored on 
the cross-points. y0, y1, y2, etc. represent the hidden 
neurons, as already shown in Fig. 1(a). Here y0 is the 
result calculated with the bitwise operation between the 
input neurons and the corresponding synaptic 
connections. The operation can be simply expressed with 

,0
0

n

o i i
i

y x w
=

×= å . Here xi and wi,0 mean the ith input 

neuron and the synaptic connection between xi and y0, 
respectively. Similarly, y1, y2, etc. can perform the same 
bitwise operations simultaneously, for the input neurons 
from x0 to xn. As you see in Fig. 1(b), y0, y1, y2, etc. can 

perform the bitwise operations in parallel, at the same 
time. These parallel bitwise operations can make 
memristor crossbars very suitable for realizing BNNs in 
hardware. 
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Fig. 1. (a) The conceptual diagram of BNNs with binary 
synaptic weights of +1 and -1, (b) The memristor crossbar for 
realizing BNN hardware. Here the binary memristors can 
represent the binary synaptic weights of BNNs, (c) The 
normalized memristor's conductance with increasing the 
number of programming pulses and the conductance change per 
pulse with increasing the number of pulses. Here the 
measurement#1, #2, and #3 are from the following references 
[7-9], respectively. 
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Memristor’s programmable behaviors have been 
studied intensively for many years [5-15]. This is mainly 
due to the fact that memristors can possibly mimic 
biological synaptic functions well. Moreover, in terms of 
fabrication technology, memristor crossbars can be 
implemented with CMOS-compatible Back-End-Of-Line 
(BEOL) process [16, 17]. By doing so, memristors can 
be combined with CMOS circuits to realize various 
Memristor-CMOS hybrid systems such as memristor 
BNNs. Moreover, memristor crossbars can be stacked 
layer by layer to form a 3-dimensional architecture that 
seems very similar to human brain’s neuronal structure 
[16, 17]. 

Finally, it should be noted that we focus on only binary 
memristors not multi-valued memristors in this paper, 
because we use memristor crossbars for realizing BNNs. 
In memristor BNNs, we program memristors with only 
LRS and HRS not allowing any intermediate levels 
between LRS and HRS. Of course, programming 
memristors with multi-values can be employed to mimic 
analog synapses [9]. But, most of the filamentary-
switching memristors show very sharp and abrupt 
transition between LRS and HRS states [11, 12, 14]. This 
sharp and abrupt transition of memristor’s conductance 
makes the precise tuning of multi-valued synapses very 
difficult [12, 14]. Compared to the multi-valued 
programming, the binary programming of memristors 
needs only LRS and HRS. As shown in Fig. 1(c), 
memristor’s conductance becomes saturated around LRS 
with applying the voltage pulses [7-9, 12]. Unlike the 
transition region, no abrupt change of memristor’s 
conductance is observed around LRS. The inset figure in 
Fig. 1(c) shows memristor’s conductance change per 
pulse with respect to the number of pulses [12]. The 
transition region shows very abrupt and sharp change of 
memristor’s conductance, as shown in the inset of Fig. 
1(c). However, the conductance change becomes smaller 
and saturated as memristor’s conductance becomes closer 
to LRS. From the main and inset figures of Fig. 1(c), we 
can know that binary programming of memristors is 
more controllable than the multi-valued programming. 

II. MEMRISTOR CROSSBARS AND ACTIVATION 

FUNCTION CIRCUITS 

Fig. 2(a) shows a memristor BNN with double-column 

crossbar [13] to calculate binary synaptic connections of 
+1 and -1. Here x0, x1, x2, etc. represent the input neurons 
that deliver voltage pulses to the crossbar. The input 
neurons of x0, x1, x2, etc. are connected with the neurons 
of y0, y1, y2, etc. through memristive synapses. g0,0+ and 
g0,0- in Fig. 2(a), represent the positive and negative 
synaptic connections, for (+) and (-) columns, 
respectively. Here the (+) and (-) columns for the y0 
neuron mean the positive and negative synaptic weights, 
respectively. The symbols denoted as f mean the 
activation function circuits, where the column current 
calculated from the positive and negative columns is 
converted to a voltage according to the activation 
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Fig. 2. (a) The double-column memristor crossbar for 
implementing memristor BNNs [13], (b) The single-column 
memristor crossbar for implementing memristor BNNs. 
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function f().The jth neuron, yj, can be formulated 
mathematically with the following equation. 
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Here, it should be noted that conductance variables, 

gi,j+ and gi,j-, can be either gLRS or gHRS. gLRS and gHRS are 
1/LRS and 1/HRS, respectively. This is the same with 
that the synaptic weights of BNNs are either +1 or -1, not 
allowing any intermediate values between -1 and +1. 
Assuming gLRS >> gHRS, gHRS can be ignored in the Eq. 

(1). If so, ( ), ,  i j i jg g+ -- can be approximated by +gLRS or 

–gLRS that can be interpreted as +1 or -1 in the memristor 
BNNs. 

Fig. 2(b) shows an alternative approach to the 
memristor-based BNNs, where a single-column is 
utilized for calculating both binary synaptic connections 
of +1 and -1. The single-column scheme in Fig. 2(b) is 
more efficient than the double-column scheme depicted 
in Fig. 2(a), where two columns of (+) and (-) are used to 
calculate positive and negative synaptic connections, 
respectively. Here x0, x1, x2, etc. represent the input 
neurons which are connected to the neurons of y0, y1, y2, 
etc. by the synaptic connections. Here g0,0 means the 
binary synaptic connection between x0 and y0. To 
calculate both +1 and -1 values using the single-
memristor column, in Fig. 2(b), we exploited gb to 
generate the current Ib [10]. 

Let’s look at Ib in Fig. 2(b), in detail. In the first 
column boxed by dashed-line, the gb column applied by 
the input pulses generates Ib current as much as 

0

n

b i b
i

I x g
=

= ×å . After that, Ib is copied to each column, 

where it can be subtracted from all crossbar columns, 
simultaneously, as shown in Fig. 2(b) [10]. The f symbol 
means the activation function circuit, where each column 
current is converted to a voltage, according to the 
activation function f(). Though the Ib generator and 
subtractor were already used in [10], we introduced the 
activation function circuits that were not used in [10], in 
this paper. Furthermore, the Ib generator and Ib subtractor 
were newly designed with CMOS circuits in this paper, 

not using any passive resistors which were used 
previously [10]. The detailed schematics of Ib generator, 
Ib subtractor, and activation function circuits are shown 
in Fig. 3(a)-(d). 

Combining the Ib subtraction and f() activation 
function, we can express yj with the following equation. 
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From the Eq. (2), if gb is given by (gLRS+gHRS)/2, the 

synaptic connection of gi,j-gb can be +(gLRS-gHRS)/2 or -
(gLRS-gHRS)/2. Here gi,j should be either gLRS or gHRS. 
These two values of +(gLRS-gHRS)/2 and -(gLRS-gHRS)/2 
can be interpreted as the binary synapses like Fig. 2(a). 
The single-column scheme of memristor-based BNNs in 
Fig. 2(b) has two obvious advantages than the double-
column scheme in Fig. 2(a). First, the memristor 
programming time can be reduced by half, because the 
number of crossbar columns in Fig. 2(b) is half of the 
number of columns in Fig. 2(a). And, also, the area of 
memristor array can be half compared to the double-
column crossbar, due to the same reason for the first 
advantage. 

Fig. 3(a) shows the detailed schematic of the single-
column crossbar in Fig. 2(b). Here, gb is implemented 
simply with a diode-connected NMOSFET, Mb. We can 
adjust the channel conductance of Mb in Fig. 3(a) to be 
equal to gb in Fig. 2(b) by adjusting the NMOSFET size. 
The input pulses from x0, x1, x2, etc. are applied to the 
corresponding gb’s to generate Ib. The Ib current is copied 
to each column and subtracted from all memristor 
columns, as shown in Fig. 3(a). g0,0 is the binary synaptic 
connection between x0 and y0. g1,1 represents the binary 
connection between x1 and y1. OP0 is an op-amp for the 
Ib generator and subtractor. M1 acts as a resistor for 
subtracting the Ib current from all memristor columns. VC 
means a bias voltage to control the channel resistance of 
M1. 

The symbol denoted as f means a current-to-voltage 
converter, where the column current Ij is converted to the 
yj voltage according to the activation function f(). As 
illustrated in Fig. 1(a), the activation functions used in 
this paper are Rectified Linear Unit (ReLU) and Sigmoid.  
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Fig. 3(b) shows the operational waveforms extracted 
from Fig. 3(a). For the first cycle, x0, x1, x2, x3 deliver the 
input pulses of 1, 1, 0, 1, respectively, to the crossbar. In 
this case, if the y0 column stores LRS, LRS, HRS, and 
LRS, respectively, the I0 current generated from the 
multiplication of the input pulses with the stored 
conductance values can be the largest among all the 
columns. This current enters the f circuit, where it is 
converted to the y0 voltage according to the activation 
function. Assuming that the activation function is ReLU, 
the converted y0 voltage is shown in Fig. 3(b). The y0 
voltage can be changed every cycle, according to the 
input pulses, as shown in Fig. 3(b)-(d) show the ReLU 
and Sigmoid activation function circuits, respectively. 
The ReLU is used for the hidden neurons and the 
Sigmoid for the output neurons. In the ReLU circuit, OP1 
converts the Ij current to the voltage of –Ij´R1. OP2 is a 
simple inverting buffer, where –Ij´R1 is just inverted to 
+Ij´R1. OP3 acts as a limiter. If the output yj voltage is 
higher than VDD or lower than GND, the output voltage is 
limited by VDD or GND, respectively. The transfer curve 
of the ReLU circuit is also shown in Fig. 3(c). The 
Sigmoid circuit is shown in Fig. 3(d). Here R2 and Vbias 
are used in the Sigmoid circuit. By doing so, the 
Sigmoid’s transfer curve can be obtained by shifting the 
ReLU’s transfer curve by -Vbias/R2. In the Sigmoid’s 
transfer curve in Fig. 3(d), the black line represents the 
mathematical Sigmoid function and the red line indicates 
an approximation by the Sigmoid function circuit. 

III. SIMULATION AND EXPERIMENTAL 

RESULTS 

By using the MNIST dataset, the memristor BNNs 
were tested to estimate the network performance. The 
MNIST recognition task is composed of 60,000 gray-
scale handwritten images for the training and 10,000 
samples for the execution. Each MNIST vector has 
28x28 gray-scale pixels which belong to one of 10 digits 
from 0 to 9, as shown in Fig. 4(a). The multi-layer neural 
network shown in Fig. 1(a), was designed to have 784 
input neurons corresponding to a 28x28 pixel image and 
1024 hidden neurons for the MNIST simulation. After 
training the designed network on the original images 
without any data augmentation and pre-processing 
method, we utilized the direct-weights download method 
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Fig. 3. (a) The detailed schematic of the single-column scheme,
(b) The operational waveforms for the single-column scheme,
(c) The ReLU activation circuit, (d) The Sigmoid activation 
circuit. 
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for delivering the trained weights to the memristor 
crossbar. In order to investigate the impact of 
memristance variation on network performance, Monte-
Carlo simulation was used in Matlab, in which the 
percentage of variation was varied from 0% to 30%. We 
assumed that HRS and LRS are 1 MW and 10 KW, 
respectively. In Fig. 4(a), first, we tested the analog 
neural network with full-precision numbers. The 
accuracy of this network, considered as the baseline 
reference, was estimated as high as 98.3%, as shown in 
Fig. 4(a). It should be noted that no memristance 
variation is considered for the baseline network. And, we 
tested 4-bit memristor and 6-bit memristor NNs, 
respectively, from memristance variation=0% to 30%. 
When the variation=0%, 4-bit and 6-bit NNs show the 
recognition rate as high as 97.3% and 97.7%, 
respectively. However, for the variation=30%, the 
recognition rates of 4-bit and 6-bit NNs are degraded 
very much as low as 42.3% and 39.7%, respectively. The 
binary memristor-based NNs show better performance 
than 4-bit and 6-bit NNs, for the variation=30%. As, 
expected, the binary NNs seem more robust to the 
variation than 4-bit and 6-bit NNs. This is because the 
binary values are more difficult to be flipped from 0 to 1 
or vice versa than the multi-valued NNs. In other words, 
to flip binary numbers from 0 to 1 or vice versa, we need 
to apply larger variation to them than the variation to the 
multi-valued numbers. Table 1 compares the network 
accuracy for 4-bit NN, 6-bit NN, BNN with single-
column, and BNN with double-column. Though 4-bit and 
6-bit NNs are better in recognition rate than the 
memristor BNNs for the variation=0%, the BNNs 
become better than the multi-valued NNs, with 
increasing the memristance variation to 30%. Thus, the 
memristor BNNs can be thought more variation-tolerant 
than the multi-valued memristor NNs such as 4-bit, 6-bit, 
etc, as indicated in Table 1. 

Comparing the single-column and double-column, the 
single-column crossbar presents a slight improvement in 
recognition, compared to the double-column scheme. This 
is because the number of memristors in the single-column 
scheme is just half than the double-column scheme. The 
smaller number of memristors can improve the recognition 
rate slightly better than the larger number of memristors, 
under the same condition of memristance variation. 

The more obvious advantages of the single-column 

scheme can be found in power consumption and area. It 
is clear that the single-column scheme can reduce the 
power consumption by half, because it has only half 
memristors, compared to the double-column. As 
expected, Fig. 4(b) shows that the single-column scheme 
consumes only half power than the double-column, with 
varying the LRS from 10 KW to 50 KW. The power 
simulation was performed by CADENCE SPECTRE 
[18]. The CMOS model parameters were obtained from 
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Fig. 4. (a) MNIST recognition rate with varying the percentage 
variation in memristance from 0% to 30%, (b) Percentage 
power consumption with varying LRS from 10 KW to 50 KW 
(HRS/LRS =100). 

 
Table 1. MNIST recognition rate comparison of 6-bit 
memristor NN, 4-bit memristor NN, single-column BNN, and 
double-column BNN. Among 4 configurations, the single-
column BNN shows the best performance for the memristance 
variation is as high as 30% 

 6-bit NN 4-bit NN Single-col 
BNN 

Double-col 
BNN 

Variation=0% 97.7% 97.3% 96.1% 96.1% 
Variation=30% 39.7%  42.3% 53.9% 52.4% 
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SAMSUNG 0.13-µm CMOS technology. The VDD used 
in SPECTRE simulation is 1.3 V and HRS/LRS ratio of 
memristors is 100. 

In addition to the recognition rate simulation, the 
measurement results of the double-column and single-
column crossbars are also shown in this paper. In the 
experiment, the measured memristors were fabricated 
with the carbon fiber on the aluminum film, [19, 20]. Fig. 
5(a) shows the structure of measured memristors [19, 20]. 
Fig. 5(b) shows the current-voltage relationship of the 
measured memristors. Here, the applied voltage was 
swept from -2.5 V to 3 V and vice versa. The measured 
butterfly curve in Fig. 5(b) shows that SET and RESET 
voltages are around 2.3 V and -1.4 V, respectively. For 
HRS/LRS ratio, HRS was observed at least 100 times 
larger than LRS of the measured memristors. 

The measurement set-up for memristor array is 
depicted in Fig. 6(a). Here, Keithley 4200-SCS 
(Semiconductor Characterization System) is connected 
with Keithley 708B (Switching Matrix). By doing so, the 
Source-Measure Units (SMUs) in Keithley 4200-SCS 
can measure the fabricated memristor array cell by cell. 

 

Fig. 5. (a) The structure of measured memristors are formed by 
carbon fiber and aluminum film [19, 20], (b) The current-
voltage relationship of the measured memristors. 
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Fig. 6. (a) The measurement set-up in upper. The input patterns 
(X) and the stored patterns (W) for the double-column and 
single-column crossbars in lower. HRS and LRS are 
represented with the open circle and the solid circle, 
respectively, (b) The measured currents for the double-column 
scheme programmed by [LRS, HRS, LRS] and [HRS, LRS, 
HRS], (c) The measured currents for the single-column scheme 
programmed by [LRS, HRS, LRS], (d) The measured currents 
for the single-column scheme programmed by [HRS, LRS, 
HRS]. 
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In the measurement, we tested both the double-column 
and single-column schemes. For the double-column 
scheme, we stored the complementary patterns such as 
[LRS-HRS-LRS] and [HRS-LRS-HRS] on two columns. 
After that, we applied 8 input patterns to the double-
column scheme one by one, as shown in Fig. 6(b). The 8 
input patterns are from [000] to [111]. Among 8 input 
patterns, we could find that the input pattern [101] is the 
winner among the 8 patterns because the input pattern 
[101] can maximize the column current, for the double-
column with [LRS-HRS-LRS] and [HRS-LRS-HRS]. 

In Fig. 6(c), we measured the single-column scheme 
with [LRS-HRS-LRS]. For this case, the input pattern 
[101] shows the largest current among the others. In Fig. 
6(d), we measured the single-column scheme with [HRS-
LRS-HRS]. Here, we could know that the input pattern 
[010] matches the stored [HRS-LRS-HRS]. From the 
measurement, we could verify that the single-column 
scheme can work well like the double-column scheme. 
There is no different in the operation between the double-
column and single-column schemes. However, the power 
consumption and memristor array’s area can be reduced 
by half, if we use the single-column scheme for realizing 
the memristor-based BNNs. 

IV. CONCLUSION 

Binarized Neural Networks (BNNs) use only binary 
synapses of +1 and -1, not allowing any intermediate 
weights between -1 and +1. Though the recognition rate 
of BNNs is lower than the conventional Deep Neural 
Networks (DNNs), BNNs have attracted many interests 
nowadays, because BNNs do not need the complicated 
multiplication such as DNNs. Binary memristor 
crossbars can be very suitable to realize BNN hardware. 
This is because, in memristor BNNs, simple binary 
operation can be performed in bitwise manner for all the 
columns in memristor crossbars, simultaneously. 

In this paper, we designed the single-column and 
double-column memristor BNNs, respectively. In 
addition, ReLU and sigmoid activation function circuits 
were also designed with CMOS circuits. The designed 
Memristor-CMOS hybrid circuits of BNNs were tested 
for MNIST test vectors. The memristor BNNs were 
verified to recognize almost 90% MNIST digits when the 
memristance variation is as large as 25%. 

In terms of variation tolerance, the memristor BNNs 
were compared with the multi-valued memristor neural 
networks such as 4-bit, 6-bit, etc. As a result, we could 
confirm the memristor BNNs become more variation-
tolerant than the multi-valued memristor neural networks 
if the variation becomes larger than 22%. 

Comparing the single-column and double-column 
BNNs indicated that the single-column BNN could save 
the power consumption and array area almost by half 
than the double-column. This is because the single-
column has just half memristors than the double-column. 
And, we measured the single-column and double-column 
BNNs using the fabricated memristor array. In this 
measurement, both the double-column and single-column 
BNNs were observed to work well. 
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